

Using Machine Learning to Forecast MaaS Adoption

Craig Bettmann Cogensia

The Problem

- Anticipating and preparing for changes in how people travel on roadways
 - MaaS
 - CAVs
 - Individuals less likely to own a vehicle
- What does that mean for a toll operator?
 - Road design
 - Technology
 - Capacity
 - Congestion
 - Customer experience

14-16

The Solution

- Understand past and current customer behavior to predict future behavior
 - Where will CAVs and MaaS-directed traffic arrive first?
- Utilize machine learning to handle the Big Data processing and decisioning

86TH ANNUAL MEETING & EXHIBITION

The (Big) Data

OCT

14-16

Trip transaction data

Calculating and classifying trips

Account data

- Account type
 - Commercial/Personal
 - Transponder/LPR

Geographic data

Location of customers and toll plazas

(\$)

Demographic data

• Age, income, family status, price sensitivity, tech savviness, hobbies and interests

19	0770	
DATA	PACKAGE	

Evaluating Trips

• For each trip:

- Unique customer ID
- Timestamp
- Origin and Destination (O/D)

Aggregate trips to the customer level

Classifying Trips

• For each customer, determine:

- Consistency
- Frequency
- Day of week
- Time of day
- "Home" plaza
- "Work" plaza
- Nearest plaza
- Most frequently used plazas

86TH ANNUAL MEETING & EXHIBITION

The ATD (Abnormal Trip Detector)

 Evaluates whether trips are likely Rideshare trips

ПП

86TH ANNUAL MEETING & EXHIBITION

How do you classify 1 billion trips?

1,000,000,000!

Machine Learning

Machine Learning

 artificial intelligence that allows a computer to identify patterns and learn from data with little human intervention

 The MLRA (Machine Learning Rideshare Algorithm) evaluates every trip and every customer to identify which are rideshare

Mapping Rideshare Usage and Potential MaaS Adoption

86TH ANNUAL MEETING & EXHIBITION

Implications for Tollways

- Predict where CAV and MaaS adoption will first impact tollways
- Plan for CAV and MaaS-enabled roadway needs
 - Lane width, markings, and signage
 - Smart roadways
 - Amount of broadband needed
 - Congestion points and peak times
 - CAVs providing road
 maintenance/conditions data to toll
 agency

14-16

Next Steps

- Continue to train the algorithm
 - More data, more tollways, more cities
 - Primary research
- Identify/infer rideshare customers
 - Insights into behavior, preferences, transportation needs
- Implement roadway changes based on the algorithm

Thank you!

Craig Bettmann Sr. Vice President | Client Solutions

- <u>CBettmann@Cogensia.com</u>
- 630.635.2411
- Cogensia.com

