Video-Based Vehicle Classification and Detection
Björn Crona, Kapsch TrafficCom
Vehicle Classification Subsystems

- Volumetric and shape based
 - Length, width, height, height profile
- Trailer detection
 - Cars with trailers, single trailer truck vs. single unit truck, double trailer truck
- Axle counting
 - Total axles, axles with ground contact, double wheels, wide wheels, height over axles
- Weight based
 - Maximum gross weight, current weight, axle pressure
- Type
 - Bus vs. truck, commercial bus vs. city bus, light commercial vehicles, taxis, RVs etc.
 - Tanker trucks, Container trucks, Flatbed trucks etc.
 - Trams(!)
Classification sensor types

> Inductive Loops
> Fiber Optic Treadles
> Laser scanners (LiDAR)
> And many more
 - Radar
 - IR photo cells
 - Magnetometers
 - Piezoelectric
 - Etc.
Video-based classification sensors

> Some limitations for normal video cameras
 - Light conditions
 - Fusing many cameras
> Often used in combination with other sensors
 - For specific tasks or for sensor fusion
> Or in use cases with lower performance requirements
 - ALPR cameras with classification
 - Enforcement
 - Access systems
 - ITS
> Stereo video
 - Avoids many problems and adds exact measurements
 - Perfect fit for the high requirements and classification flexibility needed in tolling
Advantages with video

➢ Tracking
 ▪ Front and rear triggers with single gantry geometry
 ▪ Improved tag correlation
➢ Specific classes
 ▪ Bus/truck
 ▪ Maximum gross weight
 ▪ Light commercial vehicles
 ▪ Container trucks
➢ Ability to filter out noise
 ▪ Rooster tails from vehicles
 ▪ Rain, snow
Video technology development

- Camera quality
 - Increase in resolution
 - Increased dynamic range
 - Higher light sensitivity

- Image analysis algorithms
 - Explosion of open source algorithms
 - Machine learning very efficient for classification
 - Autonomous driving is pushing development

- Stereo video
 - Stereo video adds another level of accuracy
 - Exact 3D measurements and no shadow problems
 - 3D information is merged from all available sensors
 - Kapsch has over 20 years of experience with stereo video
First deployed in the 90s. Now in 4th Generation

- Detects vehicles
- Triggers ANPR cameras
 - Front and rear cameras from single gantry geometry
- Track vehicles
 - Correct associated tag, front and rear plates
- Classify vehicles
 - Based on axles, volumetric and type
- Speed and headway measurements
- High performance in stop and go traffic
- High performance in all weather conditions
- Bi-directional traffic
 - Good for HOT Lanes and smaller roads
Classification with nVDC

> Volumetric – Length, Width and Height
 - For towing vehicle and trailer
> Axle counting
 - Total axles, raised axles, height over axles
> Type
 - Bus vs. Truck
 - single trailer truck vs. single unit truck
 - Maximum permissible gross weight
 - Light commercial vehicles
 - High number of requests on new types!
Selected references

> US Projects
 - All Electronic Tolling
 - NYSTA – In revenue service April 2018
 - Rhode Island Truck Tolling
 - MDTA
 - HOT/ Managed Lanes
 - I-77
 - I395
 - SANDAG

> International References
 - Sydney Harbour Bridge, Australia
 - Austrian Truck Tolling (GoMaut)
 - Autopista Central, Chile
Conclusions

- Video technology is evolving very fast and will most likely be used more and more in classification.
- Video-based classification can distinguish classes previously impossible.
- Still a lot of challenges for normal video sensors.
- Stereo video is a very well suited technology for vehicle detection and classification.

![image of vehicle detection using stereo video technology]
Thank you!

Björn Crona
Product Manager Vehicle Classification
Tolling Solution Center
Kapsch TrafficCom

Kapsch TrafficCom AB
Bataljonsgatan 12
551 10 Jönköping, Sweden
Phone: +46 36 290 3001
Mobile: +46 708 53 3001

www.kapsch.net