

A Practical Design Approach to Main Cable Dehumidification

IBTTA Maintenance & Roadway Operations Workshop: June 24-26, 2018 Harrisburg, PA

Presented by: Jonathan Morey, PE

Corrosion ceases with Relative Humidity below 40%

Dry Air injected into a cable drives water towards exhaust points

Over-Wrapping Existing Cables

Sleeve Installation

Cable Condition: Main Cable Inspection & Strength Evaluation

NCHRP Examples of Deterioration

STAGE 1

STAGE 3

STAGE 2

STAGE 4

- Cable Condition
- Live Load Demands: Site Specific Live Load Study & Analysis

LIVE LOAD DISTRIBUTION TO MAIN CABLES

- Cable Condition
- Live Load Demands
- Preservation Methods:
 - Galvanized Wire
 - Wire wrapping
 - Cable Pastes
 - Paint
 - Wedging and Oiling Cables
 - Main Cable Dehumidification

- Cable Condition
- Live Load Demands
- Preservation Methods
- Health Monitoring: Acoustic Monitoring

- Cable Condition
- Live Load Demands
- Preservation Methods
- Health Monitoring
- Load Re-distribution: Supplemental Cable System

Main Cable Dehumidification

Question & Answer

- 1. When is the right time to implement main cable dehumidification techniques?
 - Cable Condition effects how air flows through the cables
 - Corrosion creates resistance to air flow
 - Resistance to air flow reduces how much air reaches exhaust
 - Less air reaching exhaust creates challenges for an effective system

Answer: Now.

Main Cable Dehumidification

Question & Answer

- 2. How should <u>dehumidification</u> <u>techniques</u> be tailored to benefit a specific bridge, while taking into account various <u>impacts</u>?
 - Decision making process
 - Consider three cases

- 1. What are the conditions of the wires in the cable?
 - Conditions may vary throughout the cable
 - Advanced corrosion
 - Broken wires
 - Original and current cable safety factor
 - Cable capacity dictates urgency and comprehensiveness of dehumidification.

Step-by-step process

- 2. Condition of Existing Cable Sealing:
 - Existing wrapping may be in good shape
 - Material: No. 9 wire; S-wire; Hypalon Wrap; Neoprene Wrap
 - Cable Band sealing: Packed lead wool; Hot poured lead; caulk

Over-wrapping the existing cable is an option.

Step-by-step process

- 3. Access to perform works:
 - Specific configuration of the bridge:
 - Cable over traffic
 - Cable over sidewalk
 - Access to the Cables

 Minimize impacts to traveling public

- 4. Mechanical and Electrical Constraints:
 - Available space for dehumidification equipment
 - Locate within Anchorages or on Superstructure;
 - Create Building for Plant Room
 - Available electrical power supply
 - These dictate limitations on the system.

- 5. Phasing with other projects:
 - Cash flow constraints
 - Conflicts between contractors in adjacent areas
 - Sequence projects to be harmonious

- 6. Anchorage/Cable Splay Condition and Configuration:
 - Ambient atmosphere within the anchorage
 - Wire condition within this atmosphere
 - Dry air from the cable is passive
 - Separate Anchorage Dehumidification is active
 - Main Cable and Anchorage Dehumidification Systems could be done separately.

- 7. Data Collection:
 - Simple Systems
 - Constant Air Flow at lower pressures (keeps sealing in tact)
 - Periodic Manual readings to validate operation
 - Complex Systems
 - Programming to provide variable air flow based on higher pressure set point to main cable sealing is not over pressurized.
 - SCADA Communications to collect and record all data
 - Active control of the system remotely

Step-by-step process

Louis Berger Ammann & Whitney Long Span Bridge Division

Main Screen									10/2014 10:43 AM
		Eastbound							
Sort Filter Filter applied: Active All >	<				Q	uick filter: Enter:	search text	l	Data Main
Ack State Event Time	Message					Pi	riority		Alorm Log
Active 29/10/2014 21:36:59	Injection Port 4A High Humidity Alarm Medium								Alanni Log
Active 29/10/2014 20:41:4/	Injection Port 2B High Humidity Alarm								Network Status
Active 29/10/2014 20:20:03	Injection Port 18 High Humidity Alarm Medium								Set Points
Ev]	
Pier 31	07.6 °E	Injection Fans	Pier 34			Socket DH	Units	Terrer	Weather
Running Rel Humidity	00.01	Running	Rel Hu	nidity 15%	'	□ Off		Temper	rature 51.4°⊢
Dehumidifier	0.070	Dehumidifier	C l c	many 4.370		Pier 34		Rel. Hu	midity 67.6 %
Running Socket Temp	68.4 °F	Running	Socket	lemp 70.6°F		□ Off		Wind S	peed 0.0 mph
Enabled Socket Humidity	32.6 %		Socket I	Iumidity 32.8 %				Pressur	re 1012 mBar
Г									
Temperature (F) 61.7	55.1	55.6	54.7 6	4.8 54.6	55.3	50.7	58.3		
Rel. Humidity (%) 87.8	32.8	80.3	18.2 7	4.8 19.5	54.0	26.1	74.7		
Flow (cu.ft./min) 1.15	2.96	1.67	3.30 3	.92 3.76	3.08	5.31	1.02		
Pressure (in. w.c.)	11.98		12.00	12.03		12.15			
P31 N	11	E1A			E3A		P34 NE1		
P31 Socket DH Unit Pier 31 Plant Room			- C	0		— <u> </u>		Pier 34 Plant Roo	m P34 Socket DH Unit
P31 SI	2 113	EB	128	28 38	E3B	14 B	P34 SE2		
Temperature (F) 64.2	54.0	53.9	55.3 5	5.3 55.6	55.1	55.3	60.6		
Rel. Humidity (%) 92.8	34.2	69.2	31.5 6	4.0 32.4	46.9	19.7	87.3		
Flow (cu.ft./min) 2.17	5.18	2.49	5.80 3.	79 3.91	2.87	7.05	3.02		
Pressure (in. w.c.)	11.58	1	1.87	11.99		11.80			

Step-by-step process

- 8. Costs:
 - Big Ticket Items:
 - Main Cable Temporary Access
 - Labor to re-wrap and seal the length of the main cables

 Dehumidification operation and maintenance costs are relatively low

- 8. Costs (breakdown):
- Maintenance Impacts:
 - Maintenance Frequency Reduced
 - (8 hrs system check every 3 Months)
 - Active Information to indicate system performance (i.e. cable condition)
 - Ability to locate and address areas that are underperforming where sealing problems may be present
 - (i.e. takes the guess work out of what locations need preventative maintenance corrective actions)

Dehumidification	Cable Rehab Costs			
\$14M Tota				
 Wrapping a) Sleeves 	45%-65% 4%	Main Cable Painting	\$1.5M	
b) Access	10%	Supplemental Cable	\$30M	
2) Dehumid Equipment	30%-40%	Cable Replacement	\$200M +	
3) Control System	10%-15%			
4) Maintenance	1%			

Cable Dry Phase can take months

Cable Air Flow Testing will inform the Design

- Cable in-situ porosity determine by flow rate between sleeve and opening
- A/G is determined based on the following:

$$Q_{0} \cong \frac{P_{0}Ak}{G[1-e^{-kL}]} \quad \text{or,} \quad Q_{0} \cong \frac{P_{0}A}{GL}$$

Where $G = 32 - \frac{\mu}{D_{H}^{2}}$ or, D_{H} is the hydraulic diameter &
A is the cable void area

- Variable depend on cable wire conditions & presence of oil
- This information provides a baseline for an effective design

- Flow Rate reduces as blowing length increases
- Humidity near exhaust depends on exhaust flow rate
- Effective Blowing Length requires consideration of cable geometry, condition, presence of oil and corrosion.

 Cable wrapping may need to be repaired or replaced based on observed leakage

$$p(x) = \frac{P_0[e^{-kx} - e^{-kl}]}{[1 - e^{-kL}]}$$

Leakage rate, k, is found from pressure gradient equation

Comparison of Two Projects

Project 1

- Over-wrap main cables full length with Elastomeric Wrap
- Seal all cable bands, tower and anchorage hoods and saddles
- Re-tension cable band bolts
- Complex system with fiber spine SCADA System to collect and report data and Programming to vary air flow based on pressure set point.
- Continuous Single Lane Closure
- 20" Main Cable Max Blowing Length = 537 feet
- 0.43 SF Free Area (20% void ratio)
- 234 CF (20% void ratio)
- Design Flow Volume = 28 CFM (3.6 exchanges per hour)
- Design Pressure = 3.0 kPa

Comparison of Two Projects

Project 2

- Over-wrap main cables full length with Elastomeric Wrap
- Seal all cable bands, tower and anchorage hoods and saddles
- Re-tension cable band bolts
- Create splay chamber: Dry air from Main Cable
- Separate Dehumidification of Socket Chamber
- Perform Main Cable Investigation at several locations
- Utilize AM wire break data to locate panel openings
- Complex system with fiber spine SCADA System to collect and report data and Programming to vary air flow based on pressure set point.
- Restricted Lane Closures
- 13" Main Cable Max Blowing Length = 409 feet
- 0.18 SF Free Area (20% void ratio)
- 75 CF (20% void ratio)

ouis Berger

ong Span Bridge Division

- Design Flow Volume = 10 CFM (4 exchanges per hour)
- Design Pressure = 3.0 kPa

Comparison of Two Projects

Project 3

- Re-painted main cables (wire wrapping unknown)
- Thermo-hygrometers installed at sleeves
- Data is monitored and recorded through data logger
- 30" Main Cable Max Blowing Length = 250 feet
- 0.98 SF Free Area (20% void ratio)
- 245 CF (20% void ratio)
- Design Flow Volume = 28 CFM (3.4 exchanges per hour)
- Design Pressure = 2.94 kPa

Thank you!

