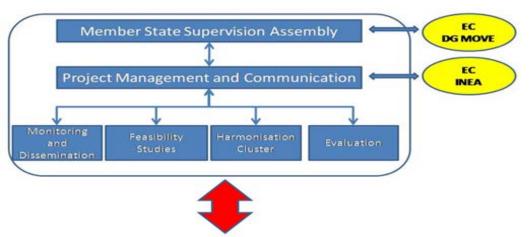
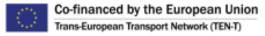


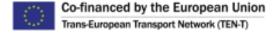
Connected and Automated
Vehicles for All Conditions –
Challenges of Accurate Positioning
and Location


Alina Koskela Special adviser New mobility services and R&D

European ITS Platform 2016 - 2020



- Involves national ministries, road authorities and operators, other partners from almost all EU Member States and neighboring countries
- Cooperating to foster, accelerate and optimize current and future ITS deployments in Europe in a harmonized way.


European ITS Platform – A4.2. Facilitating automated driving

The main tasks of the activity are to:

- 1. Identify the requirements of higher level (SAE 3-5) of automated driving for road authorities/operators
- 2. Assess the direct and indirect impacts of higher level automated driving on traffic, mobility and the core business of road authorities and operators; investigate the socio-economic benefits and costs of automated driving from the road operator's perspective
- 3. Provide a road map and action plan, focussing on the needs of road operators to facilitate automated driving on the TEN road network
- 4. Identify the requirements of automating road operator ITS to facilitate automated driving and automation level of traffic centre operations and services
- 5. Monitor, liaise and disseminate

Where's the lane? Self-driving cars confused

02.23.18

Smart Roads Could Protect Us From Self-Driving Car Crashes

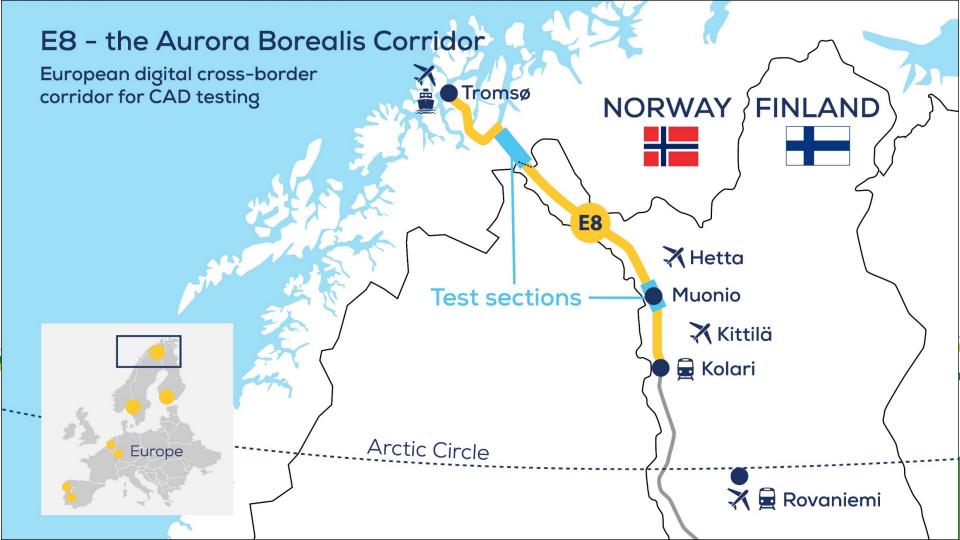
The cars will protect the passengers. But who's looking out for the walkers, cyclists, and other people nearby?

Richard Truett

Technology and Engineering Reporter

The other bump on path to driverless cars: Crumbling roads

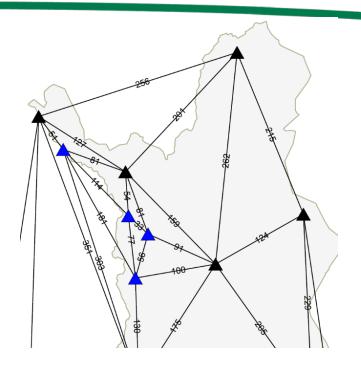
August 30, 2016 @ 11:30 am



PUBLIC SERVICE PLATFORM FOR TESTING

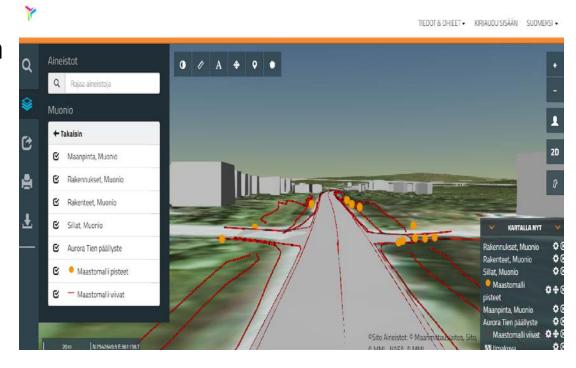
- 10 km of instrumented road on the E8
- Instrumentation and information services supporting testing of ITS, CAD and asset management in road traffic
- Open test ecosystem creating opportunities for developing technologies to work in all conditions
- Testers can utilise the test ecosystem free of charge.

Challenges for for positioning and navigation in arctic conditions


- Coverage of GNSS constellations and satellite- or land-based augmentation systems is not optimal
- Access to radio navigation (other than GNSS) and communications is limited
- Atmospheric modelling
- Availability and quality of maps
- Presence of ice and snow
- The challenge is to attain similar levels of navigation performance and reliability as in lower latitudes

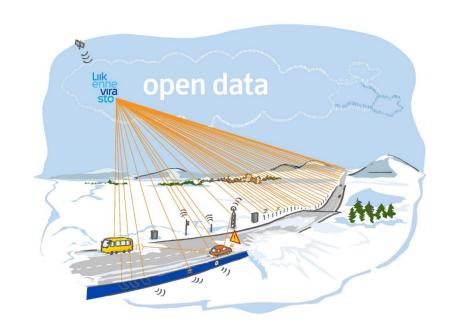
Aurora: location and positioning

- No single positioning technology is sufficient for automated driving.
- Single technology approaches lacks the necessary accuracy and robustness for safety critical applications
- Aurora positioning service offered by National Land Survey of Finland
 - Bases on Finnref-correction services
 - 4 new Finnref stations were installed alongside the E8 highway in 2017
- In the measurements carried out during 2017 location accuracy with the correction signal on E8 was less than 7 cm in more than 90 % of the time


High-definition map

 Based on the static data from the Finnish Digiroad system

and


- Laserscanning data from the area
- No dynamic layer available

Data generated by instrumentation

- All data available as open data through Digitraffic service (Aurora PoC)
- Sensors: vibration, weight, pressure, acceleration, oscillation frequency, road surface slipperiness, measuring and monitoring of the road structure and condition, traffic volumes
- Real-time information about road conditions (incl. frost sensor and radiometer) generated by road weather stations

R&D: The Arctic challenge 2017 - 2019

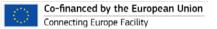
- R&D for intelligent infrastructure and road vehicle automation solutions and their performance and impacts in Arctic conditions
- Bases on Road transport automation Road map and action plan 2016 - 2020
- •Research areas:
 - Physical infrastructure (landmarks) Communications

 - Location data and positioning
- •3 consortia:
 - VTT Technical Research Centre
 - Sensible4
 - Lapland University of applied sciences

Road Transport Automation Road Map and Action Plan 2016-2020

R&D: The Arctic challenge 2017 - 2019

The CAD coalition



Research focus:

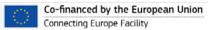
 Hybrid communication and C-ITS Day 1 services

View Video

https://www.youtube.com/watch?v=WfbkpPS-qss&feature=youtu.be

R&D: The Arctic challenge 2017 - 2019

The Sensible4 coalition:



Research focus:

 Location data and positioning of vehicle

View Video

https://www.youtube.com/watch?v=tEDMm7x9ONk

R&D:

The Arctic challenge 2017 - 2019

 The Lapland university of applied sciences coalition:

- •Research focus:
 - Posts and poles for guidance and positioning

Avoin liikennedata Suomessa

Alina Koskela alina.koskela@trafi.fi

@alina_koskela

